Journal of Pathology Informatics

TECHNICAL NOTE
Year
: 2020  |  Volume : 11  |  Issue : 1  |  Page : 33-

(Re) Defining the high-power field for digital pathology


David Kim1, Liron Pantanowitz2, Peter Schüffler3, Dig Vijay Kumar Yarlagadda4, Orly Ardon4, Victor E Reuter3, Meera Hameed3, David S Klimstra3, Matthew G Hanna4 
1 Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA
2 Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
3 Department of Pathology; Warren Alpert Center for Digital and Computational Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
4 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA

Correspondence Address:
Dr. Matthew G Hanna
Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
USA

Background: The microscope high-power field (HPF) is the cornerstone for histopathology diagnostic evaluation such as the quantification of mitotic figures, lymphocytes, and tumor grading. With traditional light microscopy, HPFs are typically evaluated by quantifying histologic events in 10 fields of view at × 400 magnification. In the era of digital pathology, new variables are introduced that may affect HPF evaluation. The aim of this study was to determine the parameters that influence HPF in whole slide images (WSIs). Materials and Methods: Glass slides scanned on various devices (Leica's Aperio GT450, AT2, and ScanScope XT; Philips UltraFast Scanner; Hamamatsu's Nanozoomer 2.0HT; and 3DHistech's P1000) were compared to acquired digital slides reviewed on each vendor's respective WSI viewer software (e.g., Aperio ImageScope, ImageScope DX, Philips IMS, 3DHistech CaseViewer, and Hamamatsu NDP.view) and an in-house developed vendor-agnostic viewer. WSIs were reviewed at “×40” equivalent HPF on different sized monitors with varying display resolutions (1900 × 1080–4500 × 3000) and aspect ratios (e.g., Food and Drug Administration [FDA]-cleared 27” Philips PS27QHDCR, FDA-cleared 24” Dell MR2416, 24” Hewlett Packard Z24n G2, and 28” Microsoft Surface Studio). Digital and microscopic HPF areas were calculated and compared. Results: A significant variation of HPF area occurred between differing monitor size and display resolutions with minor differences between WSI viewers. No differences were identified by scanner or WSIs scanned at different resolutions (e.g., 0.5, 0.25, 0.24, and 0.12 μm/pixel). Conclusion: Glass slide HPF at × 400 magnification with conventional light microscopy was not equivalent to “×40” digital HPF areas. Digital HPF quantification may vary due to differences in the tissue area displayed by monitor sizes, display resolutions, and WSI viewers but not by scanner or scanning resolution. These findings will need to be further clinically validated with potentially new digital metrics for evaluation.


How to cite this article:
Kim D, Pantanowitz L, Schüffler P, Yarlagadda DV, Ardon O, Reuter VE, Hameed M, Klimstra DS, Hanna MG. (Re) Defining the high-power field for digital pathology.J Pathol Inform 2020;11:33-33


How to cite this URL:
Kim D, Pantanowitz L, Schüffler P, Yarlagadda DV, Ardon O, Reuter VE, Hameed M, Klimstra DS, Hanna MG. (Re) Defining the high-power field for digital pathology. J Pathol Inform [serial online] 2020 [cited 2020 Oct 28 ];11:33-33
Available from: https://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2020;volume=11;issue=1;spage=33;epage=33;aulast=Kim;type=0